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Summary

We present methods of estimation and hypothesis testing for treatment
contrasts in generally balanced block designs with nested rows and
columns. The linear mixed effects model is built by randomization of all
the nuisance effects, that is blocks, rows and columns. This allows for
model decomposition into five sub-models according to decomposition
of the random sample space into five strata. We present methods for
estimation of the treatment contrasts, for testing within the strata and
also various methods of combining the strata information. In this work we
largely apply the results given by Caliński and Kageyama (2000, 2003).

Key words: block design with nested rows and columns, combined esti-
mator, combined test, general balance.

1. Introduction

We consider the following mixed effects linear model for a block design with
nested rows and columns (cf Łacka and Kozłowska, 2009):

y = µ1+D′γ +D′1ρ+D
′
2φ+∆

′τ + ε+ e, (1)

where y denotes the n-dimensional vector of observations, γ, ρ and φ de-
note b1, b2 and b3-dimensional vectors of random effects of blocks, rows
and columns, respectively, τ is the v-dimensional vector of fixed treatment
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effects and ε and e are n-dimensional vectors of the random effects of expe-
rimental units and of technical errors. Stochasticity of the effects of blocks,
rows, columns and experimental units comes from randomization of these
structural elements of the experiment. We further assume that the ele-
ments of vector ε are mutually independent as well as uncorrelated with
the random technical errors. D′, D′1, D

′
2, ∆

′ denote the design matrices
for blocks, rows, columns and treatments, respectively. Assuming that the
observations are written in lexicographical order, we have

D′ = Ib3 ⊗ 1b1 ⊗ 1b2 , D′1 = Ib3 ⊗ Ib1 ⊗ 1b2 , D′2 = Ib3 ⊗ 1b1 ⊗ Ib2 ,

where matrix Ix denotes the identity matrix of order x, 1x denotes the x
dimensional vector of ones and the symbol ⊗ denotes the Kronecker pro-
duct. Then, the variance-covariance matrix of the vector y can be written
as

Cov(y) = σ2γD
′Q1b3D+ σ

2
ρD
′
1(Ib3 ⊗Q1b1 )D1 + σ

2
φD
′
2(Ib3 ⊗Q1b2 )D2

+σ2ε (Ib3 ⊗Q1b1 ⊗Q1b2 ) + σ
2
eI,

(2)

where σ2γ , σ
2
ρ, σ
2
φ, σ
2
ε , σ
2
e denote the respective variances of the model random

effects and Q1bx = I−P1bx , where P1bx =
1
bx
1bx1

′
bx
.

According to the notation introduced by Nelder (1965b) such a mo-
del represents a design of the B(b3) −→ (B(b1) × B(b2)) type. Then, the
variance-covariance matrix of y can be written as

Cov(y) =
4∑
s=0

ξsPs, (3)

where the Ps are as follows:

P0 = P1b3 ⊗P1b1 ⊗P1b2 , P1 = Q1b3 ⊗P1b1 ⊗P1b2 ,
P2 = I1b3 ⊗Q1b1 ⊗P1b2 , P3 = I1b3 ⊗P1b1 ⊗Q1b2 ,
P4 = I1b3 ⊗Q1b1 ⊗Q1b2 ,

(4)

and ξs, s = 0, 1, 2, 3, 4, denote the variance components

ξ0 = σ2e , ξ1 = σ
2
e+b1b2σ

2
γ , ξ2 = σ

2
e+b2σ

2
ρ, ξ3 = σ

2
e+b1σ

2
φ, ξ4 = σ

2
e+σ

2
ε .

The ranks of matrices Ps, s = 0, 1, 2, 3, 4, are respectively: 1, b3 − 1,
b3 (b1 − 1), b3 (b2 − 1), b3 (b1 − 1) (b2 − 1) (see Łacka and Kozłowska, 2009).
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The matrices are symmetric, idempotent and mutually orthogonal and sum
up to the identity matrix.
Such a design has an orthogonal block structure (Houtman and Spe-

ed, 1983) and so the analysis of model (1) can be based on the method
introduced by Nelder (1965a, 1965b).
Matrices (4) define orthogonal subspaces called strata. In the case of

nested rows and columns they are, (see Bailey and Williams, 2007):

• stratum (0)

• stratum (1) between blocks

• stratum (2) between rows (within blocks)

• stratum (3) between columns (within blocks)

• stratum (4) between plots, also called rows-by-colums stratum or bot-
tom stratum.

2. Estimation

2.1. Within stratum estimation

Let us note that the vector of observations (1) can be written as follows:

y = y0 + y1 + y2 + y3 + y4, (5)

where

ys = Psy (6)

belongs to stratum s, s = 0, 1, 2, 3, 4, and

E(ys) = Ps∆
′τ and Cov(ys) = ξsPs.

Hence, the analysis based on model (1) can be split into stratum analy-
ses based on models (6). Such models have been widely considered in the
statistical literature, among others by Bailey (1981), Houtman and Spe-
ed (1983), Mejza and Mejza (1994), Caliński and Kageyama (2000, 2003,
2008), Kozłowska (2001), Bailey and Williams (2007), Łacka and Kozłow-
ska (2009) and Łacka, Kozłowska and Kozłowski (2009). It is known that,
due to the orthogonal block structure, the estimation of linear functions
of treatment effects, c′τ , can be based on the strata models (6) with the
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variance-covariance matrices Cov(ys) = ξsIn, s = 0, 1, 2, 3, 4, that is, the
Best Linear Unbiased Estimators of the functions, BLUE(c′τ ), are the same
in both the general and the simple linear model. In the case of block desi-
gns with nested rows and columns (NRC), the estimation of functions c′τ
within the strata is based on the following sets of reduced normal equations:

C(s)τ s = Qs, s = 0, 1, 2, 3, 4,

where C(s) = ∆Ps∆′ and Qs = ∆Psy. Let us note that C(s)1 = 0 for
s > 0. Hence only treatment contrasts are estimable in the strata, i.e.,
the functions c′τ for which c′1 = 0. Furthermore, for s = 0 the only
estimable functions are c′τ = (c′1/n)r′τ , where c′1 6= 0 and r denotes the
vector of replications. Hence, for the NRC designs, the statistical analysis
of treatment contrasts can be done in the four strata (s = 1, 2, 3, 4). In this
paper we consider connected designs only (i.e. r(C(4)) = v − 1).
A treatment contrast c′τ is estimable in stratum s if

c′C−(s)C(s) = c
′, (7)

where C−(s) denotes a generalized inverse of C(s), Rao and Mitra (1971).
Then, the BLUE(c′τ ) in stratum s is

(ĉ′τ )s = c′C−(s)Qs,

and its variance is equal to

Var(ĉ′τ )s = ξsc′C−(s)c.

A design with orthogonal block structure defined by the projection ope-
rators Ps and with a treatment structure defined on the column space of∆,
G = R(∆′), is generally balanced with respect to a decomposition G = ⊕iGi
if there exists a real matrix

{
λ(s)i

}
such that for each s we have

GPsG =
∑
iλ(s)iGi,

where G and Gi are the orthogonal projection operators from Rn to G and
Gi, respectively, and ⊕ denotes the direct sum.
Further in this paper we consider generally balanced NRC designs. This

allows us to make inference on the same set of contrasts within several
strata.
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Note, that matrix G can be written as

G = ∆′(∆∆′)−1∆ =∆′R−1∆ =∆′R−1∆∆′R−1∆ =

= ∆′R−1∆I∆′R−1∆ =∆′R−1∆
( 4∑
s=0
Ps

)
∆′R−1∆ =

=
4∑
s=0
∆′R−1∆Ps∆′R−1∆ =

4∑
s=0
∆′R−1C(s)R

−1∆,

where R =∆∆′ is a diagonal matrix with the numbers of treatment repli-
cations on the diagonal.
This means that the property of general balance is related to the spectral

decomposition of matrices ∆′R−1C(s)R
−1∆ for s = 0, 1, 2, 3, 4. Hence, an

NRC design is generally balanced if and only if these matrices are mutually
commutative, that is(

∆′R−1C(s)R
−1∆

) (
∆′R−1C(s′)R

−1∆
)

=
(
∆′R−1C(s′)R

−1∆
) (
∆′R−1C(s)R

−1∆
)

for s, s′ = 0, 1, 2, 3, 4. By pre-multiplying the above by∆ and post-multiply-
ing by∆′ we obtain a commutativity condition for matricesR−1/2C(s)R

−1/2

C(s)R
−1C(s′) = C(s′)R

−1C(s) for s, s
′ = 0, 1, 2, 3, 4. (8)

Note that, independently of the structure of matrices Ps, matrix
R−1/2C(0)R

−1/2 commutes with all other matrices R−1/2C(s)R
−1/2. Hen-

ce, condition (8) has to be met for s, s′ = 1, 2, 3, 4.
The eigenvalues λ(s)i of matrices C(s) with respect to R (0 ¬ λ(s)i ¬ 1)

are such that λ(1)i + λ(2)i + λ(3)i + λ(4)i = 1, i ¬ v, and the respective
eigenvectors wi meet the conditions

C(s)wi = λ(s)iRwi, s = 0, 1, 2, 3, 4 i = 1, 2, ..., v.

The set of eigenvectors can be chosen to be R–orthonormal, that is such
that w′iRwi = 1 and w

′
i′Rwi = 0 for i 6= i′, i, i′ = 1, 2, ..., v. From the

relation C(s)1 = 0 (for s > 0) it follows that at least one of the eigenvalues
has to be equal to zero and the respective eigenvector can be chosen as
wv = n−1/21. The vectors wi for i < v constitute a basis for ci which
define treatment contrasts, further called the basic contrasts c′iτ (Pearce,
Caliński and Marshall, 1974), where

ci = Rwi for i = 1, 2, ..., v − 1. (9)
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The basic contrasts are such that c′iR
−1ci = 1, c′iR

−1ci′ = 0 for i 6= i′,
i, i′ = 1, 2, ..., v and c′i1 = 0 for i < v.
Note that ∆′R−1C(s)R

−1∆ =
∑v
i=1 λ(s)i∆

′wiw′i∆ =
∑v
i=1 λ(s)iGi,

where Gi = ∆′wiw′i∆ are orthogonal projection operators. Hence, the
NRC designs have the property of general balance with respect to decom-
position G = R(∆′) = R(∆′w1)⊕R(∆′w2)⊕ ...⊕R(∆′wv), that is, with
respect to the functions c′iτ . The property of general balance is related to
the subspaces generated by the eigenvectors of the matrices C(s).
In the s stratum, the BLUE(c′iτ ) is

(ĉ′iτ )s = λ
−1
(s)iw

′
iQs for s = 1, 2, 3, 4, i = 1, 2, ..., v − 1, (10)

and its variance is given by Var(ĉ′iτ )s = ξsλ
−1
(s)i. Hence, in the s stratum,

the only estimable contrasts are those related to the non-zero eigenvalues
λ(s)i (see also Houtman and Speed, 1983). The eigenvalue λ(s)i related to
the basic contrast c′iτ is called the efficiency factor of estimation of the
contrast in stratum s.

2.2. Combined estimators – known stratum variances

It has been shown in the statistical literature that if a treatment contrast
is estimable in the bottom stratum only, then the stratum BLUE of the
contrast is also the BLUE in the full model (see Bailey, 1981; Mejza, 1992).
Many contrasts, however, are estimable in more than one stratum. The
efficiency of estimation ith basic contrast in each stratum is given by the
eigenvalue λ(s)i and it is not obvious how to use the information which is
split among the strata. In this section we assume that the stratum variances
are known and we show some properties of combined estimators.
The variance-covariance matrix (2) can be written in the following form

Cov(y) =
(
σ2ε + σ

2
e

)
(D′Γ1D+D′1Γ2D1 +D

′
2Γ3D2 + I)

= ξ4 (D′Γ1D+D′1Γ2D1 +D
′
2Γ3D2 + I) ,

(11)

where

Γ1 =
(
σ2γ+σ

2
ε /(b1b2)−σ2ρ/b1−σ2φ/b2

σ2ε+σ2e

)
I−

(
σ2γ/b3
σ2ε+σ2e

)
11′ = γ1I−

(
σ2γ/b3
σ2ε+σ2e

)
11′,

Γ2 =
(
σ2ρ−σ2ε /b2
σ2ε+σ2e

)
I = γ2I,

Γ3 =
(
σ2φ−σ

2
ε /b1

σ2ε+σ2e

)
I = γ3I,

(12)
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and

γ1 =
(ξ1−ξ2−ξ3+ξ4)/b1b2

ξ4
,

γ2 =
(ξ2−ξ4)/b2
ξ4

,

γ3 =
(ξ3−ξ4)/b1
ξ4

.

(13)

Assuming that the variance components in (2) or that the parameters (13)
are known, it can be shown, analogously to Lemma 5.5.1 of Caliński and
Kageyama (2000), that the following results hold.

Lemma 1. For the model (1), with the expectation vector E(y) =∆′τ ◦,
where τ ◦ = τ + 1µ, and covariance matrix of the form (2) or, equivalently,
(11) with known true values of γi, i = 1, 2, 3, we have that:

1. Any function w′y that is BLUE of its expectation w′∆′τ ◦,

2. A vector that is the BLUE of E(y) =∆′τ ◦,

3. A vector that gives the residuals,

all remain unchanged when deleting the term
(
σ2γ/b3
σ2ε+σ2e

)
11′ in (12), i.e., by

reducing the covariance matrix (2) to Cov(y) = ξ4T, where T = γ1D′D+
γ2D′1D1 + γ3D

′
2D2 + I.

This together with Theorem 3.2(c) of (Rao, 1974) gives the BLUE(∆′τ ◦)
in the form

∆̂′τ ◦ =∆′
(
∆T−1∆′

)−1
∆T−1y,

where T−1 = P4 +
ξ4
ξ3
P3 +

ξ4
ξ2
P2 +

ξ4
ξ1
(P1 + P0). Hence, we obtain the

following theorem.

Theorem 1. Under the assumptions of Lemma 1 we have:

1. The BLUE of τ ◦ is of the form

τ̂ ◦ =
(
∆T−1∆′

)−1
∆T−1y = C−1c Qc, (14)

where Cc =∆T−1∆′ and Qc =∆T
−1y.
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2. The covariance matrix of τ̂ ◦ is

Cov(τ̂ ◦) = ξ4
(
∆T−1∆′

)−1
−
(
σ2γ/b3

ξ4

)
11′.

3. The BLUE of c′τ ◦ for any c is c′τ̂ ◦, with the variance c′Cov(τ̂ ◦)c,
which reduces to

Var(ĉ′τ ◦) = ξ4c′
(
∆T−1∆′

)−1
c. (15)

4. The MINIQUE of ξ4 is

ξ̂4 = y′Ky/(n− v),

where K = T−1 −T−1∆′
(
∆T−1∆′

)−1
∆T−1.

For each basic contrast c′iτ
◦ = c′iτ . For ci of the form (9) we have

ĉ′iτ ◦ = ĉ
′
iτ =

4∑
s=1

u(s)i
(
ĉ′iτ

)
s
, (16)

where

u(s)i =
λ(s)i

ξs
ξ1
λ(1)i +

ξs
ξ2
λ(2)i +

ξs
ξ3
λ(3)i +

ξs
ξ4
λ(4)i

for s = 1, 2, 3, 4, (17)

(see also Mejza and Mejza, 1994). Note also that

Qc = ∆T
−1y = Q4 +

ξ4
ξ3
Q3 +

ξ4
ξ2
Q2 +

ξ4
ξ1
(Q1 +Q0) ,

Cc = ∆T−1∆′ = C(4) +
ξ4
ξ3
C(3) +

ξ4
ξ2
C(2) +

ξ4
ξ1

(
C(1) +C(0)

)
.

2.3. Combined estimators – unknown stratum variances

In the previous section we assumed that the variance components we-
re known. This is useful for looking into some properties of the combined
estimators and to see what is the “ideal” solution. However, in most prac-
tical situations, the assumption will not be met and so we need to consider
methods of combining the information from different strata when using
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estimators of the unknown variance components. In the statistical litera-
ture several techniques for combining the estimators have been suggested.
A comparison of some of the methods is given by Caliński and Kageyama
(2000). Here we present three approaches to the estimation and combina-
tion of the stratum information.
Let us write the residual sum of squares in the full model as:∥∥∥(In −P∆′(T−1))y∥∥∥2T−1 = y′KTKy = y′Ky

= γ1y′(KD′DK)y + γ2y′(KD′1D1K)y
+γ3y′(KD′2D2K)y + y

′KKy.

Following the approach used by Nelder (1968) and generalized by Caliński
and Kageyama (1996), the simultaneous estimators of ξ4, γ1, γ2 and γ3 can
be obtained by equating the partial sums of squares in the equation above
to their expectations:

E (y′(KD′DK)y) = ξ4 tr(KD′DKT) = ξ4 tr(KD′D),
E (y′(KD′1D1K)y) = ξ4 tr(KD

′
1D1KT) = ξ4 tr(KD

′
1D1),

E (y′(KD′2D2K)y) = ξ4 tr(KD
′
2D2KT) = ξ4 tr(KD

′
2D2),

E (y′KKy) = ξ4 tr(KKT) = ξ4 tr(K).

This can be written as:
y′(KD′DK)y
y′(KD′1D1K)y
y′(KD′2D2K)y
y′KKy

 = X

ξ4γ1
ξ4γ2
ξ4γ3
ξ4

 , (18)

where:

X =

 tr(KD
′DKD′D) tr(KD′DKD′1D1) tr(KD′DKD′2D2) tr(KD′DK)

tr(KD′1D1KD
′D) tr(KD′1D1KD

′
1D1) tr(KD

′
1D1KD

′
2D2) tr(KD

′
1D1K)

tr(KD′2D2KD
′D) tr(KD′2D2KD

′
1D1) tr(KD

′
2D2KD

′
2D2) tr(KD

′
2D2K)

tr(KKD′D) tr(KKD′1D1) tr(KKD′2D2) tr(KK)

 .
The equations (18) have no analytical solution, as both the coefficient

matrix on the right-hand side and the vector of the quadratic forms in
y on the left hand side contain the unknown parameters ξ4, γ1, γ2 and
γ3. Therefore, the equations have to be solved numerically by an iterative
procedure.
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Now, by inserting matrix T̂
−1
, obtained by replacing γ1, γ2 and γ3 by

their estimators γ̂1, γ̂2 and γ̂3, in place of T−1 in formula (14), and by using
the relations:

ξ1
ξ4
= b1b2γ1 + b2γ2 + b1γ3 + 1,

ξ2
ξ4
= b2γ2 + 1,

ξ3
ξ4
= b1γ3 + 1,

we get an empirical estimator of the form

τ̃ ◦ =
(
∆T̂

−1
∆′
)−1
∆T̂

−1
y = Ĉ

−1
c Q̂c,

where Ĉc = ∆T̂
−1
∆′ and Q̂c = ∆T̂

−1
y. Then, the weights (17) can be

replaced by their estimators û(s)i.
To solve the problem of estimation in model (5) we propose estimating

ξs, s = 1, 2, 3, 4, based on the following decomposition of vector y,

y = P∆′V−1y + (I−P∆′V−1)y,

where V = Cov(y) and P∆′V−1 = ∆
′(∆V−1∆′)−1∆V−1. With this de-

composition, as suggested by Nelder (1968), it is natural to consider the
solutions of the following equations as the estimators of ξs,

||P1(I−P∆′V−1)y||2 = ξ1d1,
||P2(I−P∆′V−1)y||2 = ξ2d2,
||P3(I−P∆′V−1)y||2 = ξ3d3,
||P4(I−P∆′V−1)y||2 = ξ4d4,

(19)

where ds = tr
{
Ps
(
I − P∆′V−1

)}
. In this case also, there are no analytical

solutions of (19) and Nelder (1968) suggested using an iterative procedure
to obtain some approximations to the unavailable BLUEs. The estimators
obtained by solving (19) are equivalent to those obtained from (18).
On the other hand, the stratum estimators of the treatment contrasts

(10) are mutually independent and also independent of the error sums of
squares (see Searle, 1971; Ambroży and Mejza, 2006; Łacka, 2009). This
property allows us to combine the information from various strata. We
suggest use of the method of combining stratum estimators described by
Bhattacharya (1978, 1979), and Shinozaki (1978), among others. If a con-
trast c′iτ is estimable in the four strata (or in less then four) then the
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combined estimator obtained by this method is given by

ĉ′iτ =

4∑
s=1
fsξ̂
−1
s (ĉ

′
iτ )s

4∑
s=1
fsξ̂
−1
s

(20)

where fs are arbitrary constants. This is a uniformly better estimator than
any stratum estimator (ĉ′iτ )s if and only if the constants fs are such that
for all s 6= s′, s, s′ = 1, 2, 3, 4, the following inequality holds

fs′

fs
¬
2vE(s)(vE(s′) − 4)
vE(s′)(vE(s) + 2)

, where vE(s) = r(Ps)− r(C(s)). (21)

According to Shinozaki (1978), the constants fs and fs′ can be chosen so
that the above inequality is met only if for all s 6= s′, s, s′ = 1, 2, 3, 4,
vE(s) ­ 7 and (vE(s) − 6)(vE(s′) − 6) ­ 16. Then Shinozaki (1978) suggests
taking fs = (vE(s) − 2)/vE(s).
Another way of calculating the combined estimator is to take fs = λ(s)i

and ξ̂s = v−1E(s)SSE(s), where SSE(s) denotes the residual sum of squares in
stratum s. Then, (20) becomes

ĉ′iτ =

4∑
s=1
vE(s)(SSE(s))−1w′iQs

4∑
s=1
λ(s)ivE(s)(SSE(s))−1

,

which is uniformly better than the stratum estimators (10) if and only if
the condition (21) holds for the chosen efficiencies. This is also an empirical
estimator, that is the unknown variance components are replaced by their
estimates. Good statistical properties of the empirical estimators hold only
for large sample sizes.

3. Hypothesis testing for NRC designs

3.1. Testing within strata

In the analysis of NRC designs, a researcher may be interested not only
in estimation of treatment parameters and their linear functions, particu-
larly contrasts, but also in testing hypotheses concerning such functions.
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In this section we present the analysis of variance in stratum s, including
tests for a general hypothesis as well as for some specific hypotheses of non-
significance of the estimable contrasts in stratum s. The tests are based on
the orthogonal decomposition of the variance-covariance matrix (3) and of
the column space of ∆′ as defined in Section 2.1. Further, we assume that
the random effects of model (1) are normally distributed, as follows

γ ∼ N(0, σ2γQ1b3 ),
ρ ∼ N(0, σ2ρ(Ib3 ⊗Q1b1 )),
φ ∼ N(0, σ2φ(Ib3 ⊗Q1b2 )),
ε ∼ N(0, σ2ε (Ib3 ⊗Q1b1 ⊗Q1b2 )),
e ∼ N(0, σ2eI).

The analysis of variance in stratum s is based on splitting the sums of
squares

y′Psy = y′
(
Ps +Ps∆′C−(s)∆Ps −Ps∆

′C−(s)∆Ps
)
y =

= y′
(
Ps∆′C−(s)∆Ps

)
y + y′

(
Ps −Ps∆′C−(s)∆Ps

)
y,

that is,

SSG(s) = SST (s) + SSE(s) for s = 1, 2, 3, 4.

Here SSG(s) = y′Psy denotes the stratum total sum of squares, SST (s) =

y′
(
Ps∆′C−(s)∆Ps

)
y = Qs′C−(s)Qs denotes the stratum sum of squares for

treatments and SSE(s) = SSG(s) − SST (s) = y′
(
Ps −Ps∆′C−(s)∆Ps

)
y is

the stratum residual sum of squares. The unbiased estimator of the stratum
variance is the mean square error of that stratum (see Searle, 1971; Łacka,
2009), that is

ξ̂s = v−1E(s)SSE(s), for s = 1, 2, 3, 4. (22)

Due to the treatment structure described in Section 2.1, the sum of squares
for treatments in stratum s can be written as the following combination of
treatment contrasts

SST (s) =
∑

i:λ(s)i 6=0
λ(s)i

[
(ĉ′iτ )s

]2
=

∑
i:λ(s)i 6=0

λ−1(s)i
(
w′iQs

)2
, for s = 1, 2, 3, 4.

By the assumptions of the normality of the observations, all the mean
squares in stratum s divided by respective variances follow the chi-square
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distribution with respective degrees of freedom. Also, the mean squares for
treatments and for error are independent (see Searle, 1971; Łacka, 2009).
The stratum general hypothesis we are interested in can be stated as follows

H0(s) : C(s)τ = 0 where s = 1, 2, 3, 4. (23)

This can be equivalently written as H0(s) : τ ′C(s)τ = 0. This hypothesis
states that all the basic contrasts estimable in stratum s are equal to zero.
Under this hypothesis, the test function

F0(s) =
v−1T (s)SST (s)

v−1E(s)SSE(s)
, for s = 1, 2, 3, 4

has the central F distribution with vT (s) = r(C(s)) and vE(s) degrees of
freedom.
The null hypothesis (23) is expressed in terms of the stratum informa-

tion matrix C(s), hence it depends on the design. It may be more interesting
for an experimenter to test non-significance of a specific basic contrast c′iτ
estimable in stratum s, that is

H0(s)i : (c
′
iτ )s = 0 where s = 1, 2, 3, 4, i = 1, ..., v − 1. (24)

The test function for this hypothesis is given by

F0(s)i =
λ−1(s)i (w

′
iQs)

2

v−1E(s)SSE(s)
,

which under the null hypothesis (24) has the central F distribution with 1
and vE(s) degrees of freedom.

3.2. Combined tests

It is known that, if the rejection of the overall null hypothesis H0 is
implied by the rejection of one of the four stratum hypothesis H0(s), s =
1, 2, 3, 4, then all hypotheses concerning basic contrasts, H0(s)i, should be
tested in this stratum. Otherwise, a combined test should be used to verify
significance of the basic contrasts (this problem was considered for example
for block design in 1985 by Mejza). In this section we present a combined
test, which in the case of unknown variance components has an approximate
F distribution.
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First, let us assume that the variance components are known. Then, to
apply exact F tests of the hypotheses

H0i : c′iτ = 0 (25)

the BLUEs of c′iτ together with their variances are needed. The BLUE
of the basic contrast c′iτ is the combined estimator of the form (16) with
variance given by (15) for i = 1, ..., v − 1. It is known that the squared
combined estimator divided by its variance has a χ2 distribution with 1
degree of freedom. If in this statistic the variance component ξ4 is replaced
by its estimate (22), then the obtained test function has an approximately
F distribution with 1 and r(P4)− r(C(4)) degrees of freedom.
In practice the γ values (13) need to be estimated. Here we may use the

combined empirical estimator to obtain the test function

F =
û−1(4)iλ(4)i(c̃

′
iτ )
2

y′
(
P4 −P4∆′C−(4)∆P4

)
y

which, under the null hypothesis, has an approximate F distribution.
Another test of the hypothesis H0i, suggested by Fisher (1954), uses the

statistic

χ2 = −2 lnα1iα2iα3iα4i, (26)

where

αsi = P
(
F1,vE(s) > F0(s)i

∣∣∣H0(s)i) , for s = 1, 2, 3, 4.
Under the null hypothesis (25) the test function (26) has an approximate
chi-square distribution with eight degrees of freedom. The number of de-
grees of freedom is equal to twice the number of strata used in the recovery
of information (estimation). Hence, when all four strata are included we
have eight degrees of freedom. Obviously, we include only the strata where
the tested contrast is estimable.

4. Concluding remarks

In this paper we have considered designs for which the general hypothesis
can be tested in at least one stratum. If it can be tested in one stratum only,
then because we consider only the connected NRC designs, it is the bottom
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one. Furthermore all the basic contrasts are estimable in this stratum. If a
treatment contrast is estimable in more than one stratum then, to improve
the inference, we can either use combined estimators and tests, or use NRC
designs for which the most interesting contrasts are estimated with the
highest possible efficiency in the bottom stratum. We may then be able to
restrict the inference to this stratum.
The stratum variances of the basic contrasts are inversely proportional

to the respective eigenvalues of the stratum information matrix with respect
to matrix R. That is, the higher is the efficiency the smaller is the variance
of the contrast. The stratum efficiency factors are also related to various
optimality properties of the designs. Hence, the choice of designs with spe-
cific patterns of the eigenvalues may further improve inference about the
contrasts.
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